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NOTATION

Linear Dimensions & Areas
C Chord of blade
Cw  Chord of wing
D Diameter of rotor
7 Rotor blade flapping hinge offset
la,QP,r’ Distances defined in Figure 3
r Radial distance along rotor blade
R Rotor radius
S - Wing Area
X,,la y 2~  Non-dimensionalized distances in X-Y-Z
directions (See list of subscripts below)

ch Distance of center of pressure of wing behind rotor

X,\(,Z Distax;ces inX‘Y'Z directions (See l1list of subscripts
below

Angular Messurement

X Rotor angle of attack

0(1 Wing angle of attack
O(.F Fuselage angle of attack

@ Angle defined in Figure 8

S Angle of downwesh due to Wing

9 Effective blade pitci1 at 0.75 R

QF Aircraft pitch attitude
‘Lw Wing incidence measured fram fuselage reference line
(13 Angle between 1lif't vector with and without slipstream

(See Figure 1)

\V Blade azimuth position




FORCES AND MOMENTS

GH H-force coefficient
Q’T Thrust coefficient
CF Centrifugal force per blade
S Blade sectionsal profile drag coefficient
F Force {See list of subscripts below)
. 1ift {See 1list of subscripts below)
M Moment {See Iist of subscripts below)
T Thrust
/M)‘ Non-dimensional velocity 3\{_;.@
COEFFICIENTS AND CONSTANTS
@ Rotor blade 1ift curve slope
(6 PN Wing lift curve slope without slipstream; Rotor constant
Tlapping
Q. Rotor longitudinal flapping
AK Wing aspect ratio

A B,.C,0E Quartic coefficients {Ejuation 194)

i Rotor lateral flapping

Non-dimensional coefficient {See 1ist of subscripts below)
Acspect-ratio-dependent congtant

Constant defined by equation 116

Y XIK OO

Inflow ratio defined by equation 1l
oA

Mo \J a

>\I Constan’ defined on page 8
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X9 6T ¥

TP ix LT

A

—4
o)

g

=

€8>z 3¢

Inflow based on induced veloclty in slipstream
Veloclty ratio defined by equation 12
Defined by equation L

be

lad 1idity factor = ==
Blade solidity factor TR
Locke's Number = FZ%%E:

§

VELOCTIIES

Body axis system longitudinal velocity
Induced velocity

Free stream velocity along flight path
Resultant velocity at wing

Body axis system vertical velocity
Rotor rotational velocity

Veleocity ratio ‘_r\'é._ﬂ

MISCELLANEOUS PARAMETERS

Number of blades

L N

Symbol for "a function of"

Moment of inertia of alrcraft about Y-axis

Aircraft mass

Number of rotors

Density of air

Characteristic time (See Figure 19)

Aircraft weight

Blade mament of inertia about flapping hinge
9




SUBSCRIFTS

Aerodynamic

Drag

Fuselage

Gravity

Hub

Inertia

Lift

Initial

Rotor

Slipstream, static

Tail

£ 4w Do T HIL QP

Wing

DERIVATIVE CONVENTIONS

-%%;r indicates the derivative with respect to \v/ with &
and C both held constant.

-%§7~}oﬂindicates the derivative with respect to \N/ with
only oA held constant and (3‘( free to vary. This is re-

lated to derivatives of the first type by a relation of the form

. ~ C.
Sl = €7 5T, 255 o
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3. _%V indicates the derivative with respect to V  with both X

and OT free to vary, e.g.,

& 20 4+ 2|, &
av OV 1A oA v vV

In order to find g'% some flight condition must be specified.
For instance, 1f it is specified that the force in the Z - airection

be held constant, then
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SUMMARY

An analysis of the stability characteristics of a tilt-wing VTOL air«
craft is made. The stability derivatives associgted with the wing-rotor
combination are estimated on the basis of the assumption that for the purpose
of staebility analysis, the forces acting on the wing in the slipstream can
be assumed to depend on the vector sum of the free-stream velocity and the
induced velocity of the rotor. The wing derivatives are presented in the
form of general charts which can be used for the evaluation of the deriva-
tives for any wing-rotor conmbination. Numerical calculatiions are made for
a typical tilt-wing VTOL (the Vertol T6) transition. From these calcu-
lations a curve is obtained showing the variation of the stability character-
istics with wing tilt angle. On the basis of these numerical results and
the general expressions for the derivatives, an extensive discussion is
given concerning the effects of important physical parameters on values of
the derivatives and of the effect of these derivatives on the stability

characteristics of the aircraft.
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INTRODUCTION

It is probably well to set forth at the offset the purpose of this
investigation. It is not to analyze the stability of a tilt-wing VIOL
aircraft but rather to study the factors which effect the stability
characteristics. In order to obtain useful information of this type
it is necessary to simplify the governing equations to such a point
that the stability characteristics, e.g. the periods and damping ratios
or time constants of ‘the various modes of motion as a function of the
t1lt angle, can only be relied upon to give a rather qualitative plcture
of the aircrafts response to a disturbance. Certainly, at the present
time, it is necessary to resort to experimentsl means if one wishes to
obtain accurate information on the stability characteristics of a pro-
posed design.

There are numerous reasons why the stabllity prediction problem
is more difficult than the similar problem for low speed, conventional
alrcraft. Probably two of the most difficult problems,however, are
due to the high velocity of the slipstream st low forward speeds and
to the rotation of the wing during conversion. The effect of the former
will be the main subject of the present report and only little will be
said about the latter, albelt it could easily prove to be of equal
importance.

The scope of this report is quite limited, Consideration will
be given only to VIOL ailrcraft of the tilt-wing type with articulsted
rotors fixed rigidly to the wing., The results obtained should, however,

give some insight into the characteristics of simllar types of VIOL
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such as the tilt-wing with conventional propellers or the fixed-wing,
tilting-rotor alrcraft. Also, only the longitudinal dynamics will be
considered although the lateral dynamics present similar problems and
are equally worthy of consideration.

This investigation will be ecncerned only with stability of VIOL
alrcraft. The quality sought by aircraft designers, which is usually
called "flying qualities”" is not the same thing as stability although
it bears a definite relation to it. Thus, for instance an airplane
can be unstable in the mathematical sense, i.e. have a response to an
initially small disturbance which grows without limit as time increases,
and still have ssatisfactory flying qualities. This occurs in a con-
ventional aircraft with a very long period but slightly unstable mode or
for the helicopter which has a slightly unstable short period mode near
the hovering flight condition. Flying qualities are also intimately
involved with the concept of control since an aircraft could be so
stable as to be Impossible to control. Although these other aspects of
aircraft flying qualities are equally important, we will be concerned
here only with mathematical stability.

Consideration of aircraft stability 1n the above sense ultimately
reduces to the consideration of the stability of solutions of a set
of differential squations in the neighborhood of some equilibrium
point. The degree of difficulty encountered in determining whether
or not a system of differential ejuations possesses an unstable solution
depends on the nature of the ejuations obtained. The types of systems

vhich may be obtained are:
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1. Linear with constant coefficients.

2. Linear with time varying coefficients.

3. Non-linear

For systems of equations of the first type the determination of

the stability is easily reduced to an algebraic problem. Although

in the present report only linear systems with constant coefficients
are obtained, g more accurate analysis of the VIOL conversion ma-
neuver could easlly lead to equations of either of the other types.
Thus, in the present discussion the question asked is: If the ro-
tation of the wing were stopped at any point in the conversion ma-
neuver and the aircraft allowed to come to equilibrium what would be
the stability of this equilibrium point? This is in effect assuming
that the conversion takes place over a very long time interval. In
the practical VIOL aircraft, however, the conversion time may be
relatively short, e.g. less than half a minute, and 1t would be
reasonable to ask what the effect of this acceleration would be. If
a constant acceleration 1s assumed, the equations which describe a
conversion will be linear with time varying coefficients. General
solutions of systems of equations of this type can not in general

be found although there are methods for obtaining spproximate so-
lutions 1if the coefficlents do not vary too rapldly.

In genersal it is desirable to have more information than Just
knowing whether the motion is stable or not. Although it is desira-
ble to have explicit expressions for frequency and damping in terms
of the physical parameters of the aireraft, this 1s seldom possible

and even I1f possible may lead to expressions of such complexity that
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the dependence on a particular parameter is difficult to see. In
the case of linear equations with constant coefficients, information
of this type 1s easily obtained by means of the root locus method.
Using this method the movement of the roots of the characteristic
equation in the complex plane with variation of any desired parameter
is easlly found.

The main problem in determining the stablility characteristics
for VIOL aircraft is the prediction of the forces and moments acting
on that sectlion of the aircrsft which is in the slipstream of the
rotor or propeller and in particular those acting on the wing. 1In
most VIOL with tilting rotors, nearly the entire wing is in the
slipstream as well as part of the fuselage and the tall over a large
part of the conversion.

The problem of predicting the forces and moments on an airfoil
in a slipstream has been considered by a number of authors (Ref. 1,
2,3, 4 5).

Koning considered the effect of the propeller slipstream on the
wing forces and moments. Hls theory is however, valid when the in-
duced velocity of the propeller is smsll compared to the free stream
velocity and thus can not be of any use for VIOL alrcraft where the
free stream veloclty may be zero or very small and the induced ve-~
locity quite lsrge.

The more recent analysis of Rethorst was particularly carried
out for VIOL aircraft and is hence not limited by velocity ratio.
These calculations were carried out for a large number of wing plan-

forms (Ref. 6) and may be useful in selecting optimum planforms for
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a8 specific design. An adequate comparison of these results with ex-
periment is not possible due to the lack of experimental work in this
area. Some comparison is made in Reference 21,

The experimental work of Stuper 1s quite extensive but was un-
fortunately done before the interest in VIOL aircraft and hence does
not include tests at high induced velocities.

In the experimental work of Brenkmann it is interesting to note
the effect of the slipstream rotation. For the condition of small
angle of attack and large induced velocity the 1lift coefficlent be-
comes negative over part of the span. It is concluded by Brenkmann
that this effect on the total 1ift of the span is small since the in-
crease over one half of the span and the decrease over the other aver-
age out to that given by an average angle of attack. This conclusion
is probably valid as long as the wing is not stalled. If part of the
wing is stalled, the actual 1lift may be considerably less than that
based on an average angle of attack. Since present tilt-wing VIOL
aircraft often operate with the wing at very high angles of attack,
this could lead to considerable error in computing the 1lift on the
wing. ©See Reference 20 for a more complete discussion of this effect.
Brenkmann also found that the slipstream over the entire wing had a
destalling effect which gave a significant additional 1lift.

In order to make a qualitative analysis of the effects of the
slipstream on the stability characteristic: it is almost essential to
have a falrly simple expression for the 1ift on the wing in the slip-
stream which accounts for the most important effects. In o;der to ob-

tain an expression of sufficient simplicity to be useful for stability
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analysis purposes, it is necessary to neglect many of the effects
which might be important.

For the purpose of the present investigation the follcwing method
of estimating the wing forces and moments and their derivatives will
be employed:

We assume that the wing forces are dependent on an "effective"
angle of attack and a "resultant" veloéity which are determined by
the vector sum of the free stream and rotor induced velocities. The
value for the induced velocity to be used 1s not that at the rotor disc
but somewhat greater than this. Simple momentum theory shows that the
induced velocity far downstream must be twice that at the rotor disc,
and in fact experimental evidence (Ref. 7) shows that a velocity nearly
twice that at the rotor disc is reached within a very short (less than
one diameter) distance behind it. Thus in computing the general ex-
pressions for the resultant velocity and its derivatives we take the
induced velocity to be )\' Ve s where >\' is a constant between
one and two and v is the 1nduced velocity at the rotor disc.

The 1lift curve slope to be used 1n computing the 1lift is obtained
from the work of Smelt and Davies (Ref. 8). These investigators derive
a correction to the power off 1ift curver slope which 1s dependent on
the thrust coefficient and the aspect ratio of that portion of the wing
which i1s covered by the slipstream. This correction is based on the
following considerations: Since the effect of the rotor will be to
incresse the veloclty over that part of the wing in its wake, the 1lift
wlll be lncreased over this portion of the wing and hence there will

be a spanwise change in the lift at the outer edge of the rotor which
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wlll give rise to a trailing vortex. The effect of thils vortex will
be to decrease the angle of attack of the airfolil. If the aspect
ratio of that portion of the wing in the slipstream is very large the
effect of the tralling vortices will be negligible and the lift will
simply be proportional to the resultant dynamic pressure and the
effective angle of attack of the alrfoll. For smaller values of the
aspect ratio, however, the trailing vortices will decrease the angle
of attack, the magnitude of this reduction depending on the strength
of the vortex which will be dependent on the magnitude of the spanwise
ﬁiscontinuity in the 1ift which 1s in turn proportional to the induced
velocity or the thrust coefficient. ©Smelt and Davies simply cdﬁpute
the two limiting cases and include a constant which depends on the
aspect ratio and is to be found by some experimental means. Using the

procedure outlined above, the lift on the wing can then be expressed as,
2 -

= LpSVe acox' | 1+K(—— - 1

L= 4p5Ve aox' | (5 1] (1)

where the above symbols have the following meaning:

Ve= Vi N© (2)
. . ‘._;,

A= am ! YR2N (3)
I Vel IN &

1N

— .
\/ is the free stream velocity and NJ° the induced velocity (See

Fig. 1).

Qo -slope of the 1lift curve of the wing section without the

19
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presence of the slipstream.

:5 - area of wing in slipstream.

o N ( . Xep )

s=v Ui YD t xcB (h)
where 7<C:P ~distance of center of pressure of wing behind rotors.

Y<" aspect-ratio-dependent constant mentioned above having value

between 0 ( AR — o0 J)and 1 ( AR= O ).

;ﬁl as mentioned above has value between 1 and 2.

The particular values of these two constants in an analysls are
to be determined in one of the following ways:

1. Experiment; either from models or full scale alrcraft of the
configuration being analyzed or by extrapolation from experimental
data obtalned from similar wing-rotor arrangements.

2. Rough estimates based on physical reasoning, e.g. 1f on the
particular aircraft under consideration, the wing center of pressure
was greater than one rotor diameter behind the rotor, it would be
reasonable to assume that )\' could be considered to have the value
2.

3. Choose values so as to give a best possible fit to more
accurate theoretical calculations if avallable.

The value of N, the velocity induced at the rotor disc, is ob-
tained by equating the thrust of the rotor to the change of momentum

of the slipstream, i.e.

T= (2 (PS Vi ) (5)
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It 1s assumed here that the mass flow is that flowing through a
stream tube of the same diameter as the rotor disc at the resultant
velocity.

The process of taking the required derivatives of the resultant
velocity based on the above assumptions becomes quite laborious. How-
ever, 1t was found that they could be computed in a general manner
and expressed in the form of charts so that their values can be found
immediately if a1l the trim conditions are known.

An spproximate expression for the resultant velocity can be found,
which under certain conditions introduces only a small amount of error,
by assuming that the thrust can be equated to the change in momentum
of the fluid based on only the component of the freestream velocity
which 1s normal to the rotor plane. This expression leads to large
errors when the angle of attack of the rotor plane is small at appreci-
able forward velocities. Also the error involved increases in inverse
proportion to the disc loading. Thus the assumption leads to the
greatest error for "helicopter-like" configurations and to the least
error for "ailrplane-like" configurations.

The remainder to this report will be conducted in the following
manner:

First, we will derive the controls-fixed, small disturbance e-
quations for the longitudinsl modes of motion. These equations will
be applied to a sample aircraft (Vertol model 76) and the roots of
the characteristic equation obtalned for a number of tilt angles
through the conversion. The effect of the various stabllity deriva-

tives on these roots will be determined by means of the root locus
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method. Then all of the important derivatives wlll be lnvestigated

to see the relative magnitudes of the contributions of the various
parts of the alrcraft such as the tall, rotor, wing, etc. and how these
are influenced by changes in the various physical parameters of the
aircraft such as the lift-curve slope, center of gravity location,

tail size, etc.

Finally, an attempt will be made to draw scme general conclusions
from the important results of the investigation and to outline some of
the important areas which will have to be investigated further either
analytically or experimentally in order to obtain a sufficient under-
standing of VIOL dynamics to enable the designer to proceed system-
atically to the optimum design.

The dynamics of VIOL alrcraft have been considered previously in
References 18, 19, and 20. The approach in 19 and 20 is essentially
experimental, The analysis given in Reference 18 is somewhat siuilar
to that given here although little coﬂside;ation was glven in that
report to the effects of the various physical parameters on the dy-

namic characteristics of the aircraft.
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ANALYSIS

Assumptions

We now proceed to develop equations for the longitudinal motion
of a tilt-wing VIOL aircraft. As the general develomment of small
disturbance equations of alrcraft has been given many times before
(See e.g. Ref. 9), we will be mainly concerned here with those parts
of the development which differ because of the presence of the rotors
and the tilting of the wing. As many simplifying assumptions as
possible will be made so that the important effects of the rotors on
the stability characteristics can be seen without being obscured by the
multitude of small effects which would have to be included to obtain
a preclse description of the alrcraft's dynamic behavior. Thus we
make the following assumptions:

L. Airframe iz a rigld body.

2. The;e is no coupling between the lateral and longitudinal
modes of motion. This is normally true for conventional aircraft if
all disturbances are sufficlently small, the aircraft is initislly
in level flight, and any gyroscopic effects due to the engines are
small enough to be neglected. The only cther forces acting on the
VIOL which might give a coupling are the lateral rotor forces and
these cancel for two rotors which rotate in opposite directions.

3. All disturbance quantities are small enough that their products
and squares can he neglected.

L., Aircraft performs a constant altitude conversion and initially

all velocity components are zero except along the X-axis.
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5. The wing tilt angle ig fixed during the analysis as well as

all other controls. This assumption could very well be untenable ex-

cept when the conversion takes place over a long period of time.

6. The rotor satisfies the following relations:

-
2p N RIQR VFERTE

e
Py

PG SN >
T 9}.*

oG 3

QCH - ME o+ Sa _ MAB + 3
[cWsy 20, 3 8 A

a 2
+ ALCM} -— C.o b Aé\ Cuo
x tolb 4+ Mo

(8)

where MY 1is the induced velocity at the rotor; 1 is the total thrust

produced by both rotors; N the number of rotors; X the radius of the

rotor; Sk the angular speed of rotation of the rotor; @ the col-

lective pitch at 0.75 R H 8 the profile drag coefficlent of the

blades and OT’ . Co N ;\ 5 and /M\ are defined by:

T
PN R (. QR

Cr -

Cuy = n
HE DN TR (AR

2L

(9)

(10)




)___ V Aun X — N

Or (11)
/&Agg \V esd A - (2)
OR

where \v/ is the free stream velocity and (X 1s defined in Figure 1.
The directions of 1T and ¥4 are also defined there. For the deri-
vation of the expressions for CDT- and (194 see References 10 and
11. A number of terms were dropped from the expressions given in
these books due to the fact that /AA is much less than one for most
tilt-wing configurations. It is also assumed that L 1s constant
in all of the above expressions.

T. All force and moment derivatives are constant at each trim
point.

8. Effects of rotor on wing forces can be described by the ex~
pressions given in the first section of this report. (Expressions 1,
2, and 3).

Non-dimensionalization

Non-dimensionalizing the equations of motion for this type of
VIOL alrcraft does not lead to the degree of simplification found in
the case of conventional alrcraft. This is due to the fact that the
rotor forces are proportional to the square of the rotor tip speed
rather than the dynamic pressure. When the force equations are di-
vided through by the wing area times the dynamic pressure, the wing

and tall forces are simplified to the usuel 1ift and drag coefficients;
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the rotor forces, however, are preceded by the factor Tg—Rl (%E— )2
which remains nearly constant through a transition since R is
constant and the resultant velocity does not vary much. All of the
force terms are .aever-the-less made independent of the size of the air-
craft which is probably the most important reason for the non-dimension-
alization. The moment equation was also divided by the wing chord.

Equations of Motion

A body axis system will be used in which the fuselage reference
line is initially horizontal and pointing Into the wind. The varia-
bles, however, will be expressed in terms of the familiar wind axes
variables, i.e. V , & Sl @.“. instead of W1 , W, @.C where \/
is the magnitude of the free stream velocity, X _F is the angle be-
tween the fuselage reference line and the free stream, @{,‘ is the
angle between the horizontal and the fuselage reference line, (i. and
(AT are the velocity components along the body axes. For hovering
flight (UL and \W must be retained. The relations between these

variables are:

L= Vet

W=V P oA £ (13)

The inertis forces for the longitudinal motion only are then:

F,Ia-m[\"/ma; + Vana g (‘95,?-""{)] (14)
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Fag= —m [ Vpmogr Vesaals (O5-&f)] (15)

My = — I-ka, 2 (16)

For the derivation of these expressions see e.g. Reference 9.
Using the relation o¢f = 90+ &% —Lw (o ¢ lw are defined

in Figure 1), we obtain:
Fxg = -m [— \°//wn (o= tw)= Veod (o= Lw N - é,;)] (17)
Fars -t L Vs (- tw)=Vain (amsw)(3- &) o

My = - &
4T Op Iy (19)
c;( _F = o.( since Lw 1is constant at each trim point.

The forces acting on the aircraft due to gravity are:

\:7\.:&= - \/\/ /A—m =59 (20)

\-:7_,:2{ = Wase Op (21)
M%% = 0O (22)
From Figure 2 we see that the aerodynamic forces are:

F}a,z F"-S‘ + F?‘R + Fx+ + Fxw + Fxe (23)
FTTLCL,: Fzs TF2R+ FZT*' FLW‘\" FzF: (24)
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ML&Q,z "XQ_FZS"' Za.,Fxs - N XRFZR = NZRFxR
+ X5 For = Z27%x1 —Xa Faw — e Fxw

"X‘:FZF "”ZFF +Mee + Mae + Mac~ (25)

(The subscripts & , R, T , W, ¥ indicate slipsteam, rotor, tail,

wing, and fuselage respectively; see Figure 2) where B

Fxs= Dsan (a- ww-¢) + Ls eat(a-tw-4) (26)

er=Tcm-w./.-HMLw (27)
Far= Lrcse (d-tw-€)+ Drsin (a-tw-€) (28)
Frw = Dw/wn (x-tw)+ Lwcoe (A -1w) (29)
Fxe= D o (h-Lw) + Lg cot (a-iw) (30)
Fz_3= -Ds et (A-tw=d) + g (K= iLw= ¢) (31)
F;,_R = —T/Lun tw — H ocea Lw (32)

Fz.T"-"- LT A (d'\-w-€>--— DT w(d—Lw—E) (33)
F‘z.w*; L\/\/,/-\AA'” (A -l,w)" Dw Coa (\X— Lw) (34)

Fze = be pon (f-1w)— D cre (A-tw) (35)
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The distances XA’ XR ,*EA s ‘Z-R are not constant but depend

on the sngle of tilt Ly . They are given by the expressions:

'XA= X<5,+ (r+ Qp)c;m.\,w ‘(3;.6)
Ba-= X%.+ (r+Rp+ Vo) cottw . (37)
£n-= ,Z“}+ (-r+ 0p) pon Lw (38)
Zg = Z%+(~P+JP+Sc~),AAm\,w (59

where X?f s ica, s O, /QP s }a_are constants and az_"ga_ shown in
Figure 3. These distances have also been computed for various tilt
angles and are shown plotted as a function of Lw in Figure 4.

Thus the sum of the forces and moments acting on the aircraft

may be expressed:
Fr= Fxx+ Fx‘3+ Frs + Frgt Fxrt Fxw+Fe (ko)
Fo=Fzrt Fag t Fas+ Fag+Fzrt Faw+ Pz ()

M = M‘j—_‘-_ - Xa_,‘::zs- = ‘?-O,Fxs - XR FZ‘R - 2-Z*R FKR’
v AyFor = 27 - XaFrw- ZaFyw

+ XFFZ‘_-_T Ze F-M: + Mee +Mae + M&CT (h2)
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Since we are considering only the longitudinal equations of motion
with controls fixed, we have three degrees of freedom. The three vari-
ables will be taken as V s OX Q_F . As already noted, derivatives
with respect to (¢4 are the same as with respect to o(_"_

If we expand all the forces in Taylor series, retain only the
first order terms, neglect products of the perturbation quantities,
and write for simplicity the variables themselves for their pertur-
bations, we obtain the equations in ‘the form given below. The process
of taking the first term of the Taylor series for the inertia and
gravity forces along with the aerodynamic forces eliminates the necessi-
ty of subtracting the steady state solution fram the perturbation e-
quations and also gives rise to the convenient symbols such as Cme
for the non-dimensional form of the moment of inertia about the Y-axis.
The derivatives are constant for a given trim condition but vary with

the variasble Lw . The perturbation equations are thus given by:

3.I%

4 ok el ¥ + OF: O
LAV b—aq+ 6750( b& ef + be:e*\ O (43)

b
vV
(3‘:7_ bFZ., \ bf_ bFz E) = oF: @) (44)
Vv vt EVAMEY- =3 * Y ae;9F+ bege’f

vab‘*"v.‘- bMa+B— Eﬂigp M Be=0 ()

o6p STQ{S

0/

Evaluation of stability derivatives

Due to the influence of the induced velocity on the magnitude
and direction of the resultant velocity at the wing section in the

slipstream, most of the stability derivatives will be functions of
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the rotor thrust T . In order to separate the effect of the change
due to rotor thrust variation from that due to variation with the
thrust held constant, the derivatives will be taken in the following

manner:

3()‘ = o )\ 2( )\ aCx\ (46)
O v Dox ST 00T 1d,Y Dk | v

= o( )] C
%V—)L‘— ba(v) g, * B’K‘( -Z\d»v S \ (k)

Where CT is the thrust coefficient defined by,
T"’ P N TrRZ (QQ)Z QT“ (48)

and the subscripts beside the vertical line indicate the variable or

varlables held constant while taking the derivative. The two deriva-

oCr DC
tives 55 ‘ v and —,6%\; \ o  8&re obtained in the following

manner:

The expression for CT‘ is,

%QI.—_ 24 8 (49)

o5 A 3
- N
which is sufficiently accurate as long as ,U\x = B[R is small
compared to unity; which is nearly always true for VIQL alrcraft. The

definition of M\ 1is,

A= pr s = g = (VG e
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Cr| . af N 2N oCr
DA v A Eba\v,cr BET‘VM bo(‘\/]
or,
g DA
b—glt = % ‘EElV,CT (51)
oo v |~ of DZ‘.}
A 'EET Vv,

In a similar manner,

. L DA
a‘gl’\q = _%5e  Smlee (52)

oV |- 8 22 \
4 2DCTIV,d
The derivatives éa-}i‘x 5 %élfr can be calculated and plotted in a

general msnner so that they may be applied to sny rotor at any oper-
ating condition. This has been done in Reference 12, Expressions
for and plots of these derlvatives are given in Appendix A.

Thus we see that expressions for the der%va.tives of the X_ B
# ~forces and Y.moments with respect to the three variables <X |,
V s CT are needed. These will be discussed in two sections;
first the static derivatives and then the dynamic derivatives.

Static derivatives

The statlc derivatives which ar< required are the derivatives
of the forces r:j'x and F;_r and the moment ™1 with respect to

velocity, angle of attack and pitch angle. These derivetives in
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AR Mmoo

.
~

e R .

ac _ | 2Ex - bQ bC BC
g\‘/x‘d" 5{3()5 \/R@;\ DV ‘M \d+ —l‘&\d*‘ __.B
C { oF = éCA BC o
- e L 5L

+ BCXT ‘\/ b_Xw\V b__XF\V.q. é’%&f\\/ (54)

b_a%\ocz Vg; SV b§3 | = bCM\ | %‘*\ N b‘o%"KL\

3G, G G, o
\ ofF >C 2Cxe oC
%%E\vz Vz(’S Ve 1\ 14\ N _Sd;r\v+ 5; \v

+ bCzT‘v T_WC? \v + Q%F\vf Z?—%?\\/ (56)

{ 9_@ is bald constart in esch of +these derivatdves also, but this

-+ 1s not irdicatsd by a subscriph slnce no confusion ig likely to result

over this point)

dDEr T PSVRE 20 PSR e Ot 75 Ve (57)
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oC=z _ 2 oFz _ - a3

Ser T P BT pRwe Voo

The derivatives of the moment about the Y-axls with respect to
\/ and X are given below. The lower case letters X , Z ,

are the various distances given previously non-dimensionalized with

respect to the wing chora.

bcm‘ oM

2C C
PSVROCW oY) ‘v= = Xa is‘v za-'b xs\v

-N*«B%ﬁg\\, - Nz be Cxa| o+ %y ac“'l

< ‘ Cx ¢
-?‘T Bg;f |y~ Xe b—gﬂci\ o~ 2 b’%‘f\v +¥e b;F\v

?C
T2e CSEE| v ?’_S__C’;Cﬁ\\,«- b%;ﬁ\ﬂ— BC;«;CT\V

(59)

- R oM\ _ . 2Ca4 oCx
'—557" PSS Cw o la = 7Y a\z/\ %o ESV\

xR N G+ 25 e

T aT a%‘vt’ﬂ\- Ka b‘%\d—zm B—Cg/l’\dﬁ"ﬂ xzcl

A
¢ 2e 2Cxe|,+ OCmer| s Wmge|, + OCmacs|,

(60)
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We must now find expressions for the derivatives of the forces
acting on the various components of the aircraft with respect to the
free stream velocity and angle of attack. We note that the deriva-
tives of the inertia and gravity forces are zero since each term of
the inertia forces contains a perturbation quantity which 1s zero
when evalusted at the trim condition and the gravity forces do not
contain the variables A and \/ . The fuselage force derivatives
can be carried no further since there is no theoretical method availa-
ble for treating the odd shaped fuselages which are likely to be
present on VIOL aircraft. These will normally have to be found by a
wind tunnel test on a model unless the fuselage is similar to that of
a conventional aircraft, in which case i1t can be estimated by analyti-
cal means. However, if part of the fuselage is in the wake of the
rotor, any type of analytical estimate will probably be very difficult.
The expressions for the various forces acting on the aircraft in terms

of the appropriate velocities and coefficients are:

Dg = ’TaL p S VRa Cog (61)
Ls= —fa— PS Ve Cis (62)
DW=$_/) Sw V3 Cow (63)
bow = TA’P Sw V2 Cs.:,/ (64)
Dr= —g—p St v CDT (65)
hr= 3 pStVe Cur (66)
T= pTR*(ar)* Cy - (67)

A

M= pTrR*(2R)*Chy (68)
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Substituting these expressions into the equations and carrying
out the differentiation, we easily obtain the following expressions

for the required derivatives:

|- [4C 2 + (201 G) 28|, ] pome

OV VR
-[558 B (B o) B L] et ©
ol ‘PSZ? B~ (Gt +Cox) Bl wne
a_gs avR @%‘g ka)bﬁ\ ] i d (70)
DQisl [a Cos OWR \v (5(62:?4—(3 ) a_i\v ]w\¢

[a_b QYR ), + (25 + Cos)(1- 2| )qu, (71)

o+ (255 v 32 [ent

13012, AW (bCos +Cus))\ - %ﬁ}\ )]cmscb (72)

23:EX5\V-- ;£;E§ E?!B

VR v

gc\l/:ts\ aw“‘*z SR PCH mwi—,hmwao‘r\d] (73)

Bl -an T Q) [l i emen T

'5Cm\ - — /‘SRD“ IRY R\ Iac” de—bw*'/w""w %QT\} (75)

a(;\XR)v - -an T (@) L*Ja\v prvw = estiw | T (7)
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abc\;.;w\“ - S_;_v %" CrLw (77)
Loxv| = - S ¥, Cow | (78)
BinLﬁ - 2w (L ) (a(‘,;_w_} Cow ) (79)
bew\v_ - ng >3 (OCDW_CLW> (80)

bCi'r\d_ 3 S‘T il {[CDT e ad, Vb/“* |
(bC_DI (,;_T>]/Usn€, —Y_CL_T F\
: !sg % e 7 -cor) e ]

22 % Vs (Lo Bl Y5 2 B

(81)

AR dd! OpMx
(e copane +|Cor2¥r|, + Yo 2 2|
(55(;0: +Qp )] wte} (82)
a(‘.i-,-\ S’r VT [[ DI‘ aVT\V + \L'L (aCDT' - Ct.*r)
(-2 (- 2} Jane —&CL.T%%:\V +
bCL:r —Cor ‘i\— bé' (1= %\V)}] C,M-é‘f (83)
b&’r\ -2 % 3 ﬂ-’? bVT\V*\ZT‘(bCLT + Cor)

{ aw(‘ %%\V)HmeJ'[CDT&W
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(G -cli-B0-fTeme f o

The only point which might need some explanation in obtaining
these expressions 1s the evaluation of the derivatives ?FO‘VT ; é—%‘r

The angle (X 1is obtained from Figure 2 and is,

Xr= Qo+~ vw + LT~ € (85)

Thus
Dol = - D€ - — DE ! .
&= oA o (86)
Qor . |- Q€ = |- QE 24 8
- 1-%=-%% ik

since the downwash at the tall is a function of the angle of attack

of the wing. The angle of attack of the wing 1s,

x'= qo+o- P (88)
Thus, BO(I.._ _ D - 8
X = .%\a (89)
ok _ - Db
oA VSR v (90)

This finally gives,

ot - Q€ a_Q\
OV dd! OV 4

E%{-= | — %ﬁ,(\— %\ﬂ (92)

The only derivatives which we have left to evaluate in terms of

(91)

known physical parameters are derivatives of CH B VR R d) R
GDS , C‘-S R \/T with respect to o( B \/ . We will now con-~

sider the evaluation of these derivatives.
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In order to find the CH derivatives we need an expression for
CH in terms of QT ,/M s >\ . This is obtalned from the ex-
pression given previously by substituting the expressions for a,, b|‘ 5
and Lo given in Reference 11 into it. The result is:

~ A RO M2\ 8o
- 2 e g or® (- 4)- &G

sy

G- &p-1a2)- \(o'T -5 /u)] (93)

Taking the derivative of this expression with respect to A s \/ s
C—T , and neglecting powers of /M grester than or equal to two

as compared with unity, we obtain the following:

)GDJ;‘R oCwH \a,c-r ot o [_3_0 + X(QCT)A i) (RCT> \- a}ﬂ
T (L oA B 1200 %
— (- 5Pm] (90
T A
ic Ch \ch_")J"Md‘Y +?(3C) I }CT [M
(R )—,Ux Apad (=3 + 2636 M +7/u2)]
+ %3_( Sp --a3|8> M A un oA
(2 pu-.318) (95)
& O b GG [B- 3 %, Gom] -
L&G- &mr 2 G- STl o




The derivatives QCit \ and E)CH \ are then obtained from,
v lo v

DCHL« = oCh \d, o b_%g_r\dv s Cr | (97)
DCH (98)

Tl AW e g Sl

The <11'derivatives were given previously.

The values of the resultant velocity \ﬁz and the angle between
the resultant and free stream velocities, 4) , depend upon the value
of the induced velocity of the rotor. Simple momentum considerations
show that the induced velocity far downstream approaches a value twice
that at the rotor plane in the absence of dissipation. Since experi-
mental evidence shows {See Ref. 7) that the imduced velocity approaches
a value twice that at the disc at a rather short distance behind the
disc, using the induced velocity at the disc to compute the resultant
velocity acting on an airfoil behind the disc could lead to consider-
able error. In order to account for this effect we will use for the
induced velocity the value )« A~ where )V‘ may have any value
between 1 and 2 to be chosen later and &y~ is the value of the in-

duced veloclty at the disc which is given by:

T
:z/o TR2 IR \/)‘1.”\.1

\ '(99)
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Consideration of Figure 1 shows that the resultant velocity is

glven by:

\/RR= Y)“N' +\Vpun (—o\)]a + [V,CM- (—0‘)3 2
='(-9-R)2{ (WL%U]} Y. 1R }
@QR)* [)\é “‘f‘ll (100)

which defines Mg and M - Toous,
Ve= QR \/ NS+ Az (101)

The relation between >‘S and } is,

= =N __ 102
Ms-r= =% (102)
Taking the derivatives of \/Q with respect to X, /A; \// QKR ,

and Q—r , we obtain the following expressions:

B B8l o A -Mxpna) B - Ahpnolt fix (09

Ve AVR| _ 2 10
Py B lan 2 (Dpnind) 5 o4
VR Y/ = a(2)-u a %_L-,g)\ CeaAA (105)
2 Doy = HadMrpana) G5 = AN
Using the charts of Reference 12 (See Appendix A) for ) and
its derivatives, we may plot the derivatives of \/R in general charts
for a given value of )\I . This has been done for the two extreme

values of )\I and the results are shown in Figure 5. It may be

L1




noted that in some cases the charts for the two different values of
?\/ differ considerably. Using these charts with the trim conditions
we easily evaluate the derivatives _%\/.5\ X and éb\i?x \ V

from the expressions:

‘ Vi _ : :
A, = [ b+ 38\, Eila]
%+ Bler Flw Bl

From Figure 1, 4) may be expressed as,
pnd= X Ve A (108)

Taking the derivatives of this expression with respect to A , ‘,U\7.

and CT we obtain the expressions:

crs ¢ ;—‘fg{? P, .= 2 {}A,maow)/wna -cmfd%%
=5 ect (Z2 R | (uay - 25) %
M Ds =W (109)
o5 Yy Gl oo Lavna - 35 - (Y
(ot =35)Ohs B, = M
*‘MZ)I (110)
v Y, 3 |, = —aceea ) ra (R

(= )\s)] %%— (111)
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The derivatives were also plotted in the form of charts and are

shown in Figure 6. All of the derivatives are functions of the parame-

ter, FX= M%/ Mo and A, vhere )\,= —Jc—;l'- is the
value of >\ for V= O . Also included with these charts are
charts giving \/R s CP y 7\5 ’ ) and the derivatives of the
induced wvelocity N~ .

Using these charts and the trim conditions, one can easily obtain

the derivatives %\d ) %\T:(B‘V , %\d , %\\/ from

the expressions:

Pl |3 et 3l 255 ] 3 2
.- BVR\V, * B Jaw B 9

Lt \a o ¥ \a,v 3—; X ‘ (124)
T Bloert B, 2 (2

As mentioned previously, the 1ift coefficient of the wing in the

slipstream 1s represented by the expression,

Cre= Cuo ()14 K (7o -1 )= QoK (116)
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where O'—o is the 1ift curve slope of the airfoil for the power-off

condition, i.e. for N= O in the above expression.

Thus,

DC\. 2CLo dd’ Cr, 2K (117)

S\ a;io \VK ¥ ° XNV
and since,
A'= QO+ -
we obtain,
! Q
%%l\/: (V= %Iv) (118)

giving for o the expression,
=% |V

o\ | 1 o
%‘}\v“‘ -K G+ » v S (119)

An estimate of the magnitude of the second term in the expression for
acf\ Vv shows that it 1s much smaller than the first term and

thus we take,

Lis| = 2Co @ (= 2|

2|, - o kK (=gl (120)
In a similar way we find,

a_%_l\_/_s\d._._._ - bCLo R %i\o( (121)

The CDS- derivatives are simply given by:

Lol = 2% 31~ 2 (- L) o
VL
Bl % Rl % Bl o
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In order to make an estimate of \AT and its derivatives, two
separate cases must be considered. The first is for the tail not in
the slipstream. This case will be valid for hovering and all high
tilt angles up to some angle which will have to be determined from
the geometry of a particular tail-rotor arrangement. Although the
rotor disturbs the flow somewhat even outside of the slipstream, the
disturbance is quite small (See Ref. 13), and can probably be neg-

lected. For this case then we have,
o=V M M| = o
\'Lr ‘ bv\d | aa\V

When the tall 1s in the glipstream the velocity can as & first
approximation be taken as \vﬁz computed for ")¢== 2% and the deriva-
tives are those given previously for \/R .

We will now consider the derivatives of the rotor pitching moment.
In order to do thils we must first have an expression for the pitching
moment acting on the aircraft due to the rotor. This expression is
obtained in the following analysis:

Figure 7 shows the forces acting at the flapping hinge which may
cause a pitching moment if offset hinges are present., If the angle ﬁg
is small, the resultant force on the blade is approximately equal to

the centrifugal force and we may approximate the vertical force by,

D

Fzo.= CF /u.mﬁ (124)
where,

ﬂ= o — QU CMLP‘b(PM\q) (125)
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The moment acting at the hub is thus approximately,

~

where © 1is the amount of hinge offset. The piltching moment about

the Y-axis 1s then,

M«ao'-'- —Mn e ¥ ‘ (127)

We are only interested in the value obtained by averaging this ex-
pression over the angle \.P . This is for \'.3 blades,
o At ‘
M)XO Y- y CF e o (Bo-aiceed-by /"’“‘““’)d‘\’
o
- :E_ CE eaq, (128)
The centrifugal force is,

- R
CFE= Q% J';‘ﬁh\" dr = OQ* Mg (129)

where MS is the static moment. Thus,

M)&f f&' D*Ms e a, (130)

For small /\,\ s

Qu = Mx ceoa o (g—@+a>«) (131)

A more complete analysis of this moment valid for any /\A and 6

is given in Reference 10,




The required derivatives are given by,

OCMC,\:\ . OChmece bCMCFL(
SV la —v— ldor T

aCMCF ‘v bCMcf:\v acﬁcg\d G \v

oy

The terms on the right are easily obtalned from the above expression

for the moment as,

yce |

0
b\/ \a\c‘\'g (.QV':> KCF M-SIR (% e+1)+3~)‘ o
Lviee - (R § ON o
b;CF\V'CT— ___) Kee MX [( efa)\)/w\d A% u:d_d]
oC - 4 (OR)? DA
ol PV (RR)7 Kex Pnosed S5

vhere, &’(CC = N b (=X MS
p ScR=

Dynamic Derivatives

Probably the most Iimportant dynamic derivatives are those which

arise due to a pitch rate, or the 8{ derivatives. Contributions

to these derivatives arise from the tail and the rotors.

also a small contribution due to the main wing but this 1s usually

k7

v a\/

(132)

(133)

(134)

(135)

(136)

(137)




negligible since the wing is so near the center of gravity of the air-
craft. The damping due to the offset hinges of the rotor is very im-
portant since it does not depend upon the free stream velocity and
hence provides damping while the aircraft is hovering.

Taking the derivatives of the moment equation with respect to

9{: we obtain,

o, & = - .a(LlR ( R _ TDChq: 2Car a£2p1
b‘é’? TR Doy T bgg 5T e YT o E1y

The force derivatives appearing in this expression are given by,

T2 -2 F QT | G ol r T o]
S 2 RS [ ome oo
o Feve LB e s 3 el
W e 3G e el

Since (3‘r is given by the expression,

o A 3
we obtain,
&G . as e?.Y

28¢ A 28

L8

(139)

(140)

(141)

(142)

(143)




From Figure 8 we may calculate the change in the velocity at the
rotor plane due to the pitch rate éElF . Using simple trigonometric

relations we find,

prf = ;‘ 2, m[w\_;g%"ﬁ‘;—‘ AN
[ ot Xp MLM %1

L= —Z% | (145)
pn| tea' £81

Since we are only interested in the product of these two relations we

may multiply them together and simplify considerably the resulting ex-

pression. Thus,

ZoZn  oan Lo 5 - b RE

LA S P T e i A

Using the double angle relations this is readily seen to reduce to,

(146)

ZpXg ~ ZrAp

. = by
/waﬂﬁ /(a.,-'\-,Q.p (lW)

Expression for the distances in the above expression were given

earlier.

The expression for .:\ in terms of 63{: then becomes,

M = \VQ&LJ\CX- N+ Q_éé‘:;hun B

(148)
AR

kg




PO ST Y
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and,

D . LanB
der R
Thus,
Ly . oF QowB
Y4 4 R
Using the expression glven in Reference 11 for CH R

AR GO _ MAE . 3Xai . MG _ Qb MQJJ
Cu a[%%.*“.%‘ RaT r AT e M - B MY

we can obtaln an expression for %Cé i . The parameters )\ B

Ql 5 /M change with pitch rate. Thus,

2 . 2 oy, 3Cw oM, W 22
o8¢ da, vy oM be{ Ox dbf

Taking the derivatives of expression 151 and neglecting the small

terms, we obtain,

O . Qg @ + 3N
ox, > ]

e gL ol

The derivative 1s Just the rotor lag,

Qay
00
:)Q| - O

oQ. \ bOu
265" ol

oK | OMx
\}‘h“l BGF b}u O L bQ?
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(150)

(151)

(152)

(153)

(15%)

(155)

(156)




where

20, | = =k
bé? Of Mx X<

The last two terms of QQ& are found to be negligible. (For

o0f

derivation of this expression see Ref. 10) % was evaluated be-

fore. From Fig. 8 we see that,

bAi = /Q cog (A4 B) ca4 X L (158)
26p QR

Combining these expressions we obtain,

20 - - oo | (L 32)le o 20 0 anB

dofF . s 4 5% __22R

+ (- up) Lol | (159)

The derivation of this expression was also carried out using the more

accurate expression of Ref. 10 and the additional terms obtained were
found to be quite small.

The 1ift at the tall is given by,

- . 2
LT = -iff) S+ V¥ Qg Ay + TT (160)
When the aircraft is pitchning at the rate 9{‘ , the angle of attack

of the tail is,

O(T - ‘L-T + Q0o+ X — Lw + 1‘\"_\/9;&_ (161)
Thus,
by s a + D T (16
Yl r v o8¢ e
Also, bC
Wy = L pSevy =2 g (163)
>6¢ } dchy
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We find the contribution due to the tail fan in the following manner,

DTt . o2 (< ?‘[CQT-' 2Cr >0k
EEI:F-_ P’TRT ((?‘R>!' ?‘QT_\F\ T\G‘P T

- A 2 orSy I G~+T+ DA K
—/Y\T“RT (2R); [ “;r bé; o DOTT .%T (164)

From Figure 9 we see that,

Vr,Mﬂolr-f /oTé-FCB-Q.O(T— s+

= (165)
AT (QR)r
Then,
Ot - Qv esworr (166)
o6r QR+
| . >0 rag
At (R ~+
Thus,
\ ~+~ G
%&; = PR (R)y 05771' L+ st At (168)
The pltching moment derivative %C-EM?E is computed in the
following manner:
The expression for the moment was given earlier as,
Nb 2
\\’\;30= - Ms 72 Q.
Thus,
OCuce . dCucr 0ai - Nbe (. 1\’\5 -6
d Of oa, 0d6of ps e (%) KR ( L (169)
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The derivative of the X-forceequation with respect to Q.P is

given by,
Q%“* SR bb)e% Pé\’
ol='8 P
T+ Nb{%‘%j

These terms have been evaluated previously. The derivative of the

Z-force equation with respect to OFf is likewise,

C= _ Vv - OFzr dFeg
vop PSVeLm AN TR bQFl

These terms were also evaluated while finding the moment derivetives.

The derivative (Cyqg £

From equation 42 we obtain,

o of FSVR)‘ o8¢ pSVRC
where I,a, is the moment of inertis of the alrcraft about the Y-axis.
This 1s not constant but varies with the wing tilt angle A.“/ . How-
ever, the amount of variation is quite small and may usually be neg-
lected.

L]
Derivatives with respect to _\_/_

oz . 2 X _ & e
G _ =2 QZ _ - & cea ( of—
d%  pPSw& 2V pS ngw (ot=rw)o

G - 2 M

55 = O
b\./ PS\/Q“;l oV

23

(170)

(171)

(172)

(173)

(17h)

(175)




Derivatives with respect 1;9_ rate of change of angle _g;‘_ attack _q_(

Xx . & X _ v _
DX PSVe? dx ,DS\/R [‘Tn Cﬁt(x Lw)]
+ 2Lz (176)
O
Lz . 2 __ B2 9‘ VAaon (-2
dX PSS Ve: O°& ,o E““ pon ( wle |
T ——s'—z-" (177)
o Xe o
bc A oM Bci'r - P___;*_: _
bc‘; = FSverc oa - 0T & ST Tea (178)

These derivatives arise due to the fact that there 1s a time lag

between s change in the angle 0( and 1ts effect on the downwash angle

at the tail & . This time lag is the amount of time required for

the flow to move from the wing to the tail and i1s given approximately by,

At = -%;_‘"r- . The contribution to the angle of attack of the

tall due to this effect i1s then,
2 2 at = 4 Ly (179)
D ot oA VT

and the angle of attack of the tail is,

. € s Dr
Ay = T+ QAC+ X - Lw—%; (0‘-‘0"71,‘) (180)
The derivative of this with respect to 0.( is,
2or _ o€ A (181)
DA oKX VT
The derivatives of CxT and Q*T are given by,
ber = =2 la\—‘r Ane + é_Ql me] (182)
Po Yo S \f}‘zca OX OA
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The 1lift and drag derivatives are,
dbr _ -2 . 9% . OTy
s& = A PITVT v Fx v 5

oDt

=
O A

f> E;T'\/Tj; 25(:})7- E)CXCF

oY
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We may evaluate the derivative of the tail rotor thrust in the

following way,

oT+ -
dX

P RT (QR)2

The thrust coefficient is gilven by,
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O

Considering the collective pitch €91- constant, we obtain,

oGyt o

Ok

The inflow factor for the taill rotor is,

e =

AT T IAT
A O X

\/Tﬁ)u'f\ X+ — N+
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Thus,

OAT = W cee o BT (190)
d A (QR)y T B

Cambining all of the above expressions, we obtain,

Or = - §5 35 Lo (orvr v ReCromar (o)

: ‘ Eb(jtrr
ANE + SvyVT o we] (191)

?5(:511' - — 511‘ D€ X; QT 551- \/1' Cpd €

DX SV* ook
- St V¢ %%%" /Q;unG] (192)

The most important parameters needed in order to evaluate these

expressions are the downwash angle at the tail € and its deriva-
tive with respect to angle of attack ¢X . These derlvatives are
very difficult to evaluate with accuracy, since the flow at the
tall 1s effected considerably by both the wing and the rotor and

the effect of these change with the'wing‘tilt angle Lw .
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Evaluvation of Coefficients to Stablility Quartic

The non-dimensional derivatives developed in the previous section
can be used in place of the dimensional derivatives in equations 43-45
since all of the force derivatives were non-dimensionalized with re-
spect to the same force and all of the moment derivatives with respect
to the same moment. We wish to determiné the stability characteristics
of the solutions to this set of homogeneous, linear, constant-coefficient
differential equations. To do this we assume solutions for each of
the variables of the form V=V, th , etc. In order for non-

zero solutions to exist for the three constants V ,(j( , ©, the

determinant of their coefficients must be zero. Thus,

| (CXQ +Cxy >\> (C—Xa +Qxx >\> (C)(e-\-Cx 3 ')\>
(C?.v +Cxy >\> QC‘io(‘*Ci& >\> (Cie + (23 >~>
(CMV*'CMQ>\> &CH4+CM5(>\> @né)+CH8 )\2> (193)

u
O
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where the lower subscript indicates the derivative with respect to a
variable with the other variables held constant.

Expansion of this determinant gives & quartic equation in >\ .
These four solutions for 7\ determine the character of the motion
of the asircrsaft in response to a small disturbance. We write the

quartic in the form,
AX+BN+CHW+ DX+ E=0 (19%)

Expansion of the above determinant glves the coefficients of
this equation in terms of the stability derivatives. Eliminating
the derivatives Cze ’ C;f, » CM\’) which are zero for
9«{ o= C ;, 1.e. for the aircraft initially trimmed level,

we obtaln the following expressions for the coefficients:
\ ve ’ \ ©
A= C Mo C..x\, Cza (195)

B= CMg (va Cz - Cz VC.'.X‘;‘ ~+ QTX{'/CIz>

+ CupCasCxro - Cux Cxo Cag (196)

C= Chg (GrvCan - Cay Cr) + Chz (Gay Qs
F Coxy e = CaCmse)* Crag (Co e
= GruCas) - Cralat Cag + Gy (CraCag
- C2xCxg) (197)
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D““ CMZS (vaClzu—CzVCxog)-r CME( ‘i\/ CXQ

+ Crro (szcxé - Cxy CZe) T CMV (Q‘xdcié

- Ciaetxoe - Cz;( C’Xg) (198)

E= ng (C;VCMO(-— CM\/C29<> (199)

The underlined terms are generally smaller than the others and in
many cases can be neglected,

These expressions for the coefficients can be considerably simpli-
fied and made more physically understandable by introducing the con-
cept of the static and maneuver "Margins".

Consider first the alrplane in trimmed level flight. If the
velocity 1s changed by & small amount, the change in the moment about
the Y-axis with the angle of attack free to change but with the re-
striction that constant vertical f‘orce be maintained, i.e. CE= C{")T R

1s given by the total derivative,

mn
& lea™ %00 2N Wlen e

Taking the derivative of the equation,

C2;= C’sT (201)
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we obtain,

%(;%‘v dot + é‘ocvz a AdV=0 (202)

Solving this for the total derivative T\C‘
2.

%?/'lc: B L‘/ a5, o

Thus we obtain,

Q bCz\q
o C
o\gy\? _ M\d _ D M\V bCz\v (20k)
or, C o
%%1|v %\WM'\C;: B %‘\71—\ dCM‘Cg
_ G
- B2l Sl L3l () e

This grouping of derivatives is called the static margin, and

the E coefficient can be expressed in terms of 1t as,
= - ng (5.M~> (206)

Now consider the aircraft in a steady pull-up (See Fig. 10).
The change in the moment about the Y-axis due to the rate of rotation

of the aircraft 1s given by the total derivative,

d-lecz_ bC‘m\d BCm‘ %'_\Qz (207)

From Figure 10 we see that the Z-force in a steady pull-up is,
‘Fé= on_- \m% Cea © — MVOE =0 (208)
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and its derivative with respect to 9 is,
¥
3__‘_1 = —mV
00
or in non-dimensional form,

X - —amV
VO T pSVR?

This gives a physical picture of the derivative and is seen to
be the first term of the expression obtained previously for this
derivative. The other terms are due to change in the velocity at the
tall and rotor and are usually smaller than the term obtained above.

p
For C;L = C St . Wwe obtain,

G 3 .
—b—,gi- d,vdg 8y %Q:'%\é;\/ AO(= @

fram which we can obtaln the total derivative,

dos _ bC
36,

=2l

sz
ACum _ BC
ad = 2%5———\\J 23'1
aCa \
DA 1V

Thus,

Multiplying by we obtain,

c
S T - Tl - 3 - ()

This group of terms is usually called the maneuver margin and appears

in the O coefficient and in the J coefficient.
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If we make these substitutions in the expressions for the coef-

ficlents and omit the terms which are small compsred to the others,

we obtain the following expressions:

A= Cu 5 Cxy Cars

(215)

B= Cz(;( XCHa Cxy + CrgCxy [+ Cug Cxy Cay @0

C=Cxy (MM) + CusCxyCrs
D= Cx, (M) = QM'QC‘zVQxd

+ 0y (Cxalze - CogCxo)
k= -Cxgq (si+)

Characteristic Equation in Hovering

When the alrcraft is hovering the variable CX is no longer
defined since the free stream veloecity is zero. The equations can
be considerably simplified due to the fact that the coupling between
the vertical degree of freedom and the other degrees of freedom is
very weak, i.e. small forward velocities or angular rotatlions do not
cause any appreciable change in the Z-force and small perturbations
in the vertical velocity cause only negligibly small changes in the
X-force and the moment about the Y-axis. Thus the motion can be

approximated by the followling two equations:
(QXV-Q- Cx:, >\>\/ + (Qxe + Cxé )\)9 = 0O
(:}V1V'\\/ ‘*‘(Sjrﬂégjﬁ'* (:\,‘é;)ﬁ*:)€9‘= O
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Setting the determinant of the coefficlents equal to zero gives a

cubic equation in )\ with the following coefficients:

B= QXC’ CM é (221)
C=CxCug + Cxy Crg (222)

D= Cx Qm‘g—— va Cxg (223)
E= "QM\/CZX_@ (22k)

Calculation of roots to the Quartic and Cubic Fguations for Various
Flight Configurations

In order to evaluate the stability for the various flight con-
figurations 1t 1s necessary to have trim conditions at each tilt
angle at which the roots of the characteristic equation are desired.
These have been evaluated with the alid of a digital computer for the
Vertol 76 (Ref. 14), and are shown plotted as a function of (X and \/
in Figure 11. The velocities on these charts are for a 1:5.2 scale
model. The full scale velocity is thus 2.28 times the velocities on
this scale. Glven these conditions, values for the wing and rotor
derivatives are easily obtained by using the charts in the appendix
and these derivatives allow calculation of the required force and
moment derivatives. These calculations were carried out for hovering
and at intervals of 10 degrees down to 15 degrees and also for 7

degrees which i1s approximately the forward flight angle of attack.
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(In forward flight the wing tilt angle is approximately equal to the
angle of attack.) The values obtained for the derivatives and for
the coefficients of the stability quartic are given in the appendix.
Using these coefficients the quartics were solved and the results
are shown in Figure 12. Values of the various parameters for the
Vertol 76 and the 1lift curve slope assumed are given in Appendix B.
The values obtained for all of the derivatives and varlables at each
of the tilt angles are given in Appendix D.

It should be borne in mind that these calculations were intended
merely to provide a qualitative picture of how the stability changes
while the aircraft moves through transition and conseguently they can
not be expected to glve accurate values for the period and damping of
the actual aircraft. Inspection of the various contributions to the
coefficlents of the quartlic allows one to see which are the main terms

v

and which can usually be neglected.

Approximate Factorization of Quartic

Often much useful information can be obtailned by an approximate
factorization of the quartic. This gives an expression for each of
the roots in terms of the stability derivatives. If such an spproxi-
mation is sufficiently accurate and results in expressions which are
not too complicated, it will enable one to determine very easily the
effect of any derivative on the quartic roots.

Since the roots which represent the short-period oscillation are
usually much larger than the other two for conventional airplanes, we

assume that an approximation to the short perliod oscillation can be

6l




obtained by dropping the last two terms of the quartic. Doing this
and reteining only the largest terms of the first three coefficilents,
we obtaln the following quadratic:
Cug ¥+ Cug A + (M’“:" - =0 (225)
o

To obtaln an approximation to the other two roots we assume a
quadratic of the form O.X"-&— by +C , and multiply it times the
short-period approximation. Then, equating coefficients of like
powers of :N , glves five equations relating QL , t) , Q@ , to
known coefficients. Using the first, fourth and fifth of these we
obtain the following expressions for the coefficients of the qusd-

ratic which should approximate the remaining roots of the quartic:

o= Cx:, (226)
CX&?:)&;QM LCMin'e -Cng sz]** Crv (22)
C‘—'-’ _ Qxe ((%-?4)) (228)

In the short period approximation the constant term is directly
proportional to (MM) whereas in the second quadratic both the constant
and 7\ terms are inversely proportional to (MM). We thus might
expect that the larger (MM), the better the approximation.

To determine the accuracy of the approximation, these two quad-
ratics were solved for a number of t1lt angles and compered with so-
lutions of the complete quartic. This comparison 1s illustrated in

Figure 13. We see that for the lower tilt angles the approximation
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1s fairly good and breaks down when the roots become smaller as would
be expected. We may also note that the approximstion did not predict

the inccreased damping of the 7 degree tilt angle.
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DISCUSSION

Variation of quartic roots with t1lt sngle

In order to discuss VIOL aircraft stability it is necessary to
know what types of response are considered desirable and also since
the desirable type can not always be attained, we would like to know
what 1s acceptable.

The stabllity criterion is most conveniently expressed by speci-
fying the regions on the complex plane into which the roots of the
quartic which determine the nature of the motion should fall. It
1s known, of course, that the roots should fall into the left half
plane; howe&er, as 1s shown by the hovering hellcopter, this condi-
tion i1s not necessary in order that an alrcraft be capable of being
flown. An instability similar to that which exists in most hovering
helicopters would, of course, never be tolerated in a conventional
airplane. We thus see that any criterion for desirable or acceptable
stability will depend on the type of alrcraft which 1s being con-
sidered. It 1is also true, as mentioned before, that handling quali-
ties depend on more than the values of the complex frequencles. The
amount of control avallable to the pilot is also very important.
Several criteria have recently been established for VTOL handling
qualities by means of simulators (See e.g. Ref. 15). Although such
results will have to be examined more closely by actual flight test,
they do give some indication of the type of response which 1s accepta-~
ble to the pilot. When the VTOL has developed considerable velocity

in the conversion, then handling quality criteria established for
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conventional subsonic aircraft can be used as a basis for establishing
desirable VIOL handling qualities. Some of the results of these two
criteria are shown in Figure 12.

In order to obtain some indication of how the stabllity charac-
teristics change as the VIOL aircraft goes through a constant altitude
conversion, a sample calculation for a typical aircraft was carried
out using the equations developed in Section I. The results of these
calculations for the Vertol 76 are shown in Figure 12. Typical roots
for an airplane and hovering helicopter are also shown. These re-
sults serve only as an indication of how the roots vary with tilt
angle and should not be thought of as giving an accurate plcture of
the stability of the Vertol 76 since the effects of the fuselage
were omitted from the calculations and a large number of simplifying
assumptions were made in order that approximate results might be ob-
tained without recourse to experimental data.

In the discusssion which follows the effect of the important
stability derivatives will be considered as well as the effect of
various physical parameters on these derlvatives. Whenever possible,
root locus plots are used to show the effect of increasing or de-
creasing the value of the important derivatives starting from the
value which was estimated for the sample sircraft.

From Figure 12 we see that the hovering roots are quite similar
to those of the typical hovering helicopter shown; i.e., there is an
unstable oscillation and a real convergence, The oscillation for the
hovering VIOL doubles amplitude in about 1.5 seconds while the hell-

copter takes 3.5 seconds to double amplitude. According to the
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criteria of A'Harrsh and Kwiatkowski which 1s shown in Figure 12, the

VTOL is unflysble in hovering while the helicopter roots shown fall

P S,

into the acceptable region. It will be noticed that the damping
ratios of the two oscillations are nearly the same. It thus appears
that in this regime damping ratio is not a significant measure of
the handling quslities.

The real convergence shown for the VIOL 1s quite rapid, having
8 time to half smplitude of only 0.5 seconds. This 1s seen to be
considerably more rapid than the helilcopter.

It is interesting to see how these hovering roots may be altered
by changing the various derivatives which esppear in the coefficients
of the cubic equation which determines the roots. The constant coef-

ficlent of the hovering cubic is,

E.‘ - Cm’u— QXQ (229)

Since CX ® is always negative, the static stabllity is determined
by the sign of the derivative (:Fﬂxr' . The following root locus
sketch for variation of (UM shows how the stability charmcteristics

of the aircraft change as this derivative 1s changed:

o
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We see from this diagram that although the time to reach half
amplitude of the speriodic mode is decreased by increasing the static
stabllity, the time to double amplitude of the oscillation is also
decreased, Thus, making the aircraft statically more stable makes
it dynamically more unstable. Decreasing the static stability has
Just the opposite effect. The dyiamic stability improves until 1t
reaches the real axis where the roots combine to glve two real con-
vergences, one of which soon becomes unstable. The point at which
it crosses the axis 1s where On'\N’: o .

Probably the most important derivative in the determination of
the stabllity characteristics of the hovering VITOL is the piltch
damping Omé . The next sketch shows how the cubic roots are

effected by variation of this derivative:

P\’&‘C&\%Y‘j :
\@‘

We see from this that a definite Improvement in the hovering

roots can be obtained by increasing the pitch damping. The time

to half amplitude of the real convergence is further decreased
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while at the same time the damping characteristics of the oscillation
are improved. This derivative in hovering is mainly due to the offset
hinges of the rotor and can be in;reased by increasing the amount of
offset.

The effect of changing the moment of inertia asbout the Y-axls is

shown below:

?ncmcuma 1

< - <

Increasing the moment of inertlia causes all of the roots to move
toward the origin. By comparing this sketch with Flgure 12 we see

that Increasing the moment of inertia of the VIOL a sufficient amount

makes them quite similar to those of the hovering helicopter shown in

the drawing.

We now consider what happens as the wing is tilted forward from

the hovering position. The first fact which can be noticed from an

examination of Figure 12 1s that the stability characteristics change

quite rapidly as the aircraft begins to move forward. This 1is due to
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the fact that as soon as the aircraft has some forward velocity the
tall has an important effect on the derivatives whereas in hovering
it had practically no effect at all.

With ten degrees of tilt angle the short period oscillation
changes period only slightly, but the demping characteristics are
improved considerably. As the wing is tilted down another 10 degrees
the real part of the root changes from posifive to negatiye while
the period decreases to about four seconds.

It is worth mentioning here that there is no definite reason
why the loci sketched through the points in Figure 12 should be
drawn as they are. Thus, 1t is possible that the mode which becomes
similar to the airplane short period could be associated with the
mode which is represented by the two real convergences near hovering.
Thus, the locus through the roots could appear as in the following

sketch:
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The dotted lines show where the locus was drawn in Figure 12. Which
of these lines is correct could be determined by camputing the roots
for several more.values of the tilt angle between 65 and 75 degrees.
As, however, this has not yet been done, we will assume in the follow-
Ing discussion that the locus 1is as shown in Figure 12.

When the aircraft attains some forward velocity the Z-force e-
quation is no longer uncoupled from the X-force and pitching moment
equations and there are then four roots rather than three. The
fourth root was, of course, present in hovering but it was not neces-
sary to compute it since it is uncoupled fram the others and 1s a
very large negative root and thus has little effect on the motion of
the aircraft.

As the aircraft gains same velocity this root moves in along the
real axis and, as shown by Figure 12, combines with the other real
convergent root to form a long period damped oscillation which be-
comes more lightly damped as the wing tilts further forward. Between
70 and 65 degrees this oscillation again becomes two real roots, one
of which becomes unstable. We thué see that a rather radical change
takes place in both of the characteristic modes at a tilt angle of
about 65 degrees. This is due to the fact that the wing stalls at
this point in the conversion.

At this point it is useful to see what happened to the equation
to cause the stability characteristics to deteriorate so badly. To do
this we consider the roots for a tilt angle of 65 degrees given in
Figure 12 and use the root locus plot to determine what changes in the
static and maneuver margin would be necessary to obtaln satisfactory
or at least improved stability characteristics at this tilt angle.
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For this tilt angle we have a dynamically stable oscillation
and two real roots, one of which decreases to half amplitude in 2.8
seconds while the other doubles amplitude in 2.3 seconds. In order
to obtain satisfactory flying qualities, the divergent root should
be removed or at least moved much closer to the origin, l.e. the time
required to double amplitude should be incressed. As the damping is
only marginal, it should be increased.

In Figure 14 we see the effect of changing th; static margin.
The gains shown on this locus are not for'changes in the static
margin but for C_:xe/ A times the static margin; where A is
the coefficient of the ;Nq' term in the quartic equation in ;\
If (SM) is decreased to zero the two real roots come together. For
further decrease in (SM) the roots leave the real axis to form a
slightly unstable oscillation with a time to double amplitude of about
17 seconds. For this amount of change in (SM) we see that the short
ﬁeriod oscillation is hardly effected at all. Further decrease in
the static stabllity causes the period of both oscillations to de-
crease. One of the oscillations becomes more unstable while the
other becomes more stable. We thus see that making the alrcraft
statically stable improves 1ts characteristics but that too much
static stabllity is undesirable since it results 1n a very short-
period divergent oscillation. We may also note that no amount of
change in the static stability alone will make the stablility charac-
teristics completely satisfactory, 1.e. make both modes both stati-

cally and dynamically stable with a desirable damping ratio.
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In Figure 15 is shown the result of changing (MM). As (MM) is
increased the real divergence moves closer to the origin; however,
as may be seen from the values of the gain shown, large gain changes
result in only a small movement while the period of the short-period
mode decreases rapidly with Increase in the gain. Since the real
rart of the oscillatory root hardly changes, the damping ratio is de-
creased. Decreasing (MM), while it improves the damping ratio of the
short-period mode, decreases the time to double amplitude of the real
divergence and thus is not a desirable change. We thus see that
little if any improvement can be obtained by changing (MM).

" Figure 16 shows the effect of changing (::fncx , which appears
in both (SM) and (MM). Decreasing Cmo( (increasing lOmo(| )
decreases the period of the short-period mode and has little effect
on the real roots. We see however that-increasiné Cmo\ improves
the stability characteristics considerably. If it is increased
enough to make the aircraft statically stable, then there will be a
long-period oscillation with a time to double amplitude of about 10
seconds. This amount of change in sznah also improves the short
period oscillation since the damping ratio is increased considerably.
According to this root locus, 1f the value of (:?“”0\ were Iincressed
from -.439 to about -.14 the stability characteristics would be con-
siderably improved. It must be realized, however, that changing
(::nqa\ in this manner improves the stability only because the wing
is stalled at this tilt angle. The derivative(:;noh appears in the
static margin multiplied by Oz\/ which 1s almost always negative

when the wing 1s not stalled. When the wing 1: stalled it can be
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positive as it is in this case, This makes the effect on the (SM)

of changing thqd\ Just the opposite of what it would be for an
unstable wing. For all considerations such as these it should be
remembered that the conditions at which the wing will stall can not
be predicted amccurately in the power-on case. The wing was assumed
to obey the power off 1lift curve shown in Figure 39 but a number of
effects are present which may cause™the stall to occur at a different
effective angle of attack.

As the wing is tilted further forward from 65 degrees, the
effective anglé of attack becomes still grester and the wing remains
stalled. Figure 18 shows how the effective angle of attack varies
through the conversion. Thils chart may be used to quickly find the
ePfective angle of attack at any tilt angle if the forward velocity
and the thrust coefficient are known. As may be seen by this chart
the angle of attack increases with increase in the velocity and de-
creases with increase in the thrust coefficient. As a consequence
of this fact, the effective angles of attack will be lower for an
accelerating alrcraft and higher for a decelerating alrcraft. The
sample conversion shown on this chart is for equilibrium trim con-
ditions, 1.e. the trim conditions were computed at each tilt angle
as 1f the airplane were in equilibrium flight at this tilt angle.

In Figure 19 1is shown a plot of effective angle of attack versus
tilt angle for different amounts of acceleration and deceleration.

We see from this that even small amounts of acceleration and deceler-

ation can change the angle of attack considerably. Also note that
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the tilt angle at which the maximum angle of attack is attained in-
creases for a decelerating aircraft and decreases for an accelerating
alrcraft. We also see that for this particular aircraft, an acceler~
ation of about 0.2 g is required in order for the wing to be unstalled
over the entire conversion.

The 1ift coefficlents obtained using angles of attack obtained
in this way and the power off 1lift curve slope should not be expected
to be too accurate due to the assumptions which have been made. The
following three effects have been found experimentally to be present
in the slipstream (Ref. 4) and mey cause the 1lift developed to differ
somewhat from that predicted on the basis of simplifying assumptions:

1. Slipstream rotation.

2, Delayed stall due to an effective boundary layer control.

3. Variation in induced velocity across disc,

Brenkmann concludes that for predlction of the average 1ift on the
wing the delasyed stall effect 1s the most important and that potential
flow solutions may give satisfactory results if this additional 1ift
is taken into account. He also shows that for the wing-propeller
combination which he tested, slender-body theory (See Ref. 5) predicts
the 1ift very well 1f the contribution due to the delayed stall 1s
added to that given by the theory.

As the tilt angle decreases further we see that the period of
the short-period mode decreases with essentially no change in the
time of half amplitude. This means, however, that the damping ratio
-~ of the mode i1s decreased. The period of this mode thus changes from

4.2 seconds at a tilt angle of 65 degrees to 2.2 seconds at a tilt
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angle of 15 degrees. According to the boundaries established by
means of an F-94k, (Ref. 16) the damping of this mode is still not
sufficient, although it is not too far from the acceptable boundary.

With further decrease in the tilt angle the other mode comes
back to the real axis, giving for a tilt angle of 65 degrees a pure
divergence. With further decrease the time to double amplitude of
the divergent mode at first hecomes shorter and then longer again,
We see that these roots remain on the real sxis essentially until
the angle of attack becomes small enough for the wing to become un-
stalled.

We now consider how the roots in this region will be effected
by variation in (SM) and (MM) as we did before for a tilt angle of
65 degrees. In this case as a representative angle we will use a
tilt angle of 35 degrees.

In Flgure 17 we see the results of changing (SM) starting from
a tilt angle of 35 degrees. As 1t is decreased the two real roots
move together, the divergent root meeting the imaginary axis when
(SM) becomes zero. As (SM) is further decreased the two roots leave
the real axls to form a stable oscillation. We note that although
the roots to begin with are quite similar to those in the 65 degree
t11t angle case, the oscillation here is convergent whereass in the
other case it was slightly unstable. For gmin sufficilent to keep

this mode from crossing back over the imaginary axis the short-period

mode has moved only a small distance and in the direction of increased

damping. We then see that for this tilt angle, giving the aircraft an
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adequate amount of static stability makes the period and dasmping of
both modes acceptable.

Changing (MM) for this tilt angle is almost the same as for the
65 degree tilt angle and is thus not shown. '

In Figure 20 we see the effect of changing (:‘V\(m , the deriva-
tive of the pitching moment with respect to angle of attack for constant
velocity. We see that decreasing (:l4cx has almost no effect on the
two real roots since the zeros for this root locus are located almost
on these poles. The period of the short-period mode 1s decreased with
almost no change in time to half amplitude for a decrease in (:kﬁc* .
Increasing (jp4c* is somewhat more interesting. The real divergent
root moves toward the lmaginary sxis and the real convergent root de-
creases 1ts time to half amplitude, We see however by comparing the
gains on the two loci that a (:}1<X increase sufficient to make the
divergent mode stable causes a very large movement of the short-period
mode. In fact at about the same gain where the one mode mskes the air-
craft statically stable, the other mode becomes dynamlcally unstable,
Thus, changing <:}1c* can improve the dynamic characteristics for this
tilt angle somewhat although it will not make them satisfactory.

Finally, golng back to Figure 12, we see what happens to the two
modes when the tilt angle becomes small enough to unstall the wing.

In this case the tilt angle is approximately equal to the effective
angle of attack. The angle of attack in normal forward flight i1s about
7 -degrees and this tilt angle is shown in the disgram. The demping of
the short period mode decreases considerably without much change in

the period and the two real roots form a long period oscillation
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similar to the usual phugoid. The aircraft in forward flight then has
acceptable, although not ideal, stability charascteristics.

Effect of Physical Parameters

In the last section we saw how the quartic roots varied as the
t11lt angle was changed for a typical tilt-wing VIOL aircraft. It was
also shown by means of root locus plots how the stability character-
istics at several tilt angles would be changed if the values of the
two groups of terms, (SM) and (MM), were changed. We would now like
to see how the various derivatives which make up these two groups de-
pend on the aircraft physical parameters.

In our original perturbaticn equations, there were 18 deriva-
tives. Six of these were found to be elther zero or neglligibly small.
Of the remaining derivatives, five, CH’é s C;é s Qxe , Cx\'/ s

Qz 5& s depend essentially on only the mass, moment of inertia, and
forward velocity. Two of these derivatives, C; é s C; o » &lso
have small contributions from the tail and other parts of the aircraft,
but these are small compared to the inertia contributions. Thus we
will be mainly interested in the derivatives of the forces and moment
with respect to angle of attack and free stream velocity and the pitch
damping derivative CM '9 . All of these seven derivatives depend
rather strongly on the easily alterable physical parameters of the air-
craft and are thus of greatest interest.

Consider first the pitch damping. This derlvative is mainly due
to the tail although, as will be seen, the rotor can also be quite
. important. The fuséla.ge also contributes some pitch damping but this

can not be expressed in analytical form for fuselages of unusual shape
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and must therefore be determined experimentally for a particular con-
figuration. Also, the pitch damping of the fuselage is usually quite
small compared to that from the other parts of the aircraft.

The contributions to the pitch damping as a functlon of the rotor
angle of attack are shown in Figure 21. We see that the largest con-
tribution here is that of the horizontal stabillizer. This contri-
bution is simply a result of the fact that when the aircraft 1s pitch-
ing at a fate é; , the angle of attack afthe tail is increased by an
amount ;§i , Producing a moment which opposes the pitch rate. This
moment is thus directly proportional to the distance from the center
of gravity to the tail and to the velocity of the fluld at the tail.
The contribution of the offset hinges is seen to be independent of
the angle of attack and thus of the free stream velocity. It is for
this reason that this contribution is particularly important. Al-
though 1t is small compared to the taill contribution in forward flight,
it is almost the only source of damping in hovering. This contri-
bution 1s directly proportional to the amount of hinge offset. We
can see how this moment arises in the following way:

Consider the side view of a two bladed rotor with a mean coning

angle (So and a flapping angle (., (See Fig. 7).

Fe
B=B.-a CF. k—e — ) Bota,
_______ A g B..._ mm—— cma— ——
e —
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The moments about points A & B due to the 1ift on the rotor and the
centrifugal force must balance since the blades are hinged at these

points. Thus,

/Q—Q«N-/i Fz“lmﬁ CF =0 | (230)

Y2 = CF J(cunﬁ = CF-'P (231)

since FS is small. The force ¥:IE produces a moment about point

O due £o the offset e, The moment due to the two blades is thus,
M= -CFe|(fo-a)-(Borai)l=acF ca, (232

Thus, a moment is produced which is proportional to GL, . When the
aircraft is rotated at a rate Ea about 1ts center of gravity the
rotor can not retain its former position since it 1s hinged and can

only be moved by aerodynamic forces. The rotor thus lags behind

producing an effective change in Oy of magnitude,

= OO0 _ (_ \o
We thus have,
QO Cr a (-lo 3
-5%1 X A ( x (234)

In the actual case the rotors are moving and these forces must be
averaged over the rofation angle \+) as was done previously. The
simple considerations above show, however, the source of the velocity

independent moment.
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The contribution of the tail fan although non-flapping is also
independent of the velocity and is very small due to the smallness
of this rotor.

The contribution of the rotor forces are particulerly inter-
esting due to the fact that above a certain velocity the H-force
actually contributes a "negative damping" force. This phenomenon
can be explained in the following way: When the aircraft is pitching
at a given rate, the rotor lags behind its position for the non-
pltching rotor as mentioned previously. Due to this lage the blades
on one side of the rotor are flapping up and on the other side are
flapping down. The velocity components due to this flapping causes
the angle of attack of the blades to differ on the two sides and
hence to change the magnitude and direction of the local 1lift vector.
When the inflow is small, the change in direction is greater than the
magnitude change and results in an H-force change which opposes the
pitch rate. However, when the inflow becomes sufficlently large,
the magnitude change, which is in the opposite direction, is the
greatest and the H-force change tends to aid the pitch rate. The
pitch damping due to thrust change is then positive. This effect is
1llustrated in Figure 22,

We see that the pitch damping can be increased by increasing the
tall size and the amount of flapping hinge offset, and that there
exists a destabilizing contribution to the pitch damping which in-
creases with the inflow ratio.

Consider mext the moment resulting from an angle of attack change

at constant velocity. The important contributions to this derivative
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are shown in Figure 23. We see that the largest contribution here
is definitely that due to the change in angle of attack of the tail
and it depends on the distance between the aircraft center of gravity
and the tail and on the fluid velocity at the tail. All of the other
contributions are smsll but destebilizing except that of the wing
Z-force. This, however, is due to the fact that the wing is stalled.
If the wing is not stalled throughout the transition, all contri-
butions to thils derivative except the tail are always destabilizing.
When the wing 1s not stalled there is a center of gravity position
at which the wing and rotor contribution cancel that of the tail.
The center of gravity range is thus decreased due to the destabili-
zing contributions of the rotor.

We must remember, however, that positive (2F46K does not neces-
sarlly mean static instability as is usually the case with conventional
alrplanes. For the VIOL the static stability is determined by the

sign of,

<SM>= pr( Chuv = Czy Crmat (235)

and the first term may be of equal or greater importance than the
second. The relative magnitude of these two terms as a function of
rotor angle of attack is shown in Figure 24. From this plot we see
that near hovering both terms are stabilizing. At about 20 degrees
the wing stalls and both terms change sign and become destabili-
zing. The <2§4Vr term is then very small upy to about 80 degrees
while the <:;1<A term is destabilizing in this region. At about

83 degrees both terms again become stabilizing. Thus, we see that
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the derlvative Cjkd\/ is quite important near hovering and in
forward flight.

The important contributions to (354\/ are shown in Figure 25.
The major contribution in hovering 1s the wing force in the X-direction.
This derivative is mainly due to the change in the 1ift of the wing
in the slipstream since the wing is in a nearly vertical position.
It owes its magnitude to the fact that there is considerable verti-
cal separation between the wing center of pressure and the center of
gravity of the aircraft, which 1s not present in a conventional air-
plane. When the angle of attack is high enough, however, the wing
stalls and this contribution becomes small and of opposite sign. The
two rotor terms we see depend on the relative position of the rotor
and the aircraft center of gravity. The overall effect of the rotor
ts to give a small positive contribution to (:)»1\/ which increases
in magnitude as the wing is tilted down.

Positive CM\/ usually increases the static stabllity since

(}?%A is always negative for & non-stalled wing and (SM) is nega-

tive for static stabllity. The following shows how the signs of the

derivatives effect (SM),

QSM>= Cax Cruy - sz Cwm o
(-) = (-) (+) - (=), (-)

Usual sign May change sign for stalled Always negative
for unstalled. wing., if tail 1s suf-
wing. ) ficiently large.
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We see from this that 1f wing stall causes <:‘SE\/ to change
sign, this will give a destabilizing contribution. If both CZo(
and (?pqvl change the contribution will still be stabilizing while
if either changes sign while the other does not, the comtribution
will be destabilizing.

In Figure 26 we see the contributions to (350‘ , the change
in force in the Z-direction with angle of attack at constant velocity.
In a conventional aircraft, if the taill 1lift is neglected, this deriva-
tive is just the slope of the wing lift curve. Here we see that while
the effect of the wing is still important, the rotor also gives a
large contribution. Although the stalled wing gives a large positive
contribution, the negative contributions of the rotor and the tail
are almost sufficient to keep this derivative negative throughout
conversion. The tall contribution is simply due to the change in
tall 1ift with angle of attack and hence is proportional to the dy-
namic pressure at the tail. The triangular shape of the rotor contri-
bution can be explained as follows: If the angle of attack is
slightly changed, this effects the inflow to the rotor, ;\ , and
hence the thrust. Thus, near hovering there is little contribution
to <:¥£6K since the rotor is nearly parallel to the flow and the
inflow 1s hardly effected by a small angle of atteck change. In for-
ward flight, on the other hand, the thrust vector is almost parallel
to the flow and the thrust force 1s in the X-direction and does not
effect (3Z%X . Since both these effecté vary approximately linearly
with tl1lt angle, the rotor willl have & maximum Z-force change with

angle of attack at a tilt angle of sbout 45 degrees.
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The other derivative which appears in (SM) is (:25\/ , the
change in Z-force with velocity at constani angle of attack. This
derivative has a contribution from the rotor and from the wing.
These are shown 1in Figure 27. As mentioned before, this derivative
1s usually negative for an unstalled wing. However, we see that the
rotor contribution is positive and fairly large and hence could be
large enough to make Cjég\/ positive even for an unstalled wing.
The rotor term arises from the fact that if the velocity in-
creases at constant angle of attack the inflow to the rotor is in-
creased, decreasing the angle of attack of the rotor blades and de-
creasing the thrust. The thrust decrease becomes greater as the wing
1s tilted down and the freestream velocity has a greater component
perpendicular to the rotor disc. Near the forward flight position ‘
the thrust is mostly in the X-direction and the contribution to (:%;\/
is decreased.
The wing contribution here depends on wing a;gle of attack and
becomes positive or destabilizing when the wing stalls. .
Consider now how the derivatives we have discussed effect the
maneuver margin. The signs of the various contributions are shown

by the.following:

(MM) = Czd CMé - Czé Crx

+ = - - - -

(+) (-) (-) (+) (=),
. ™~

Usual sign May change Always same sign.

for unstalled sign for

wing. stalled wing.
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We see from this that the wing stall can make the first term decrease
the value of (MM). An increase in the magnitude of all the other
terms tends to increase (MM). The importance of (MM) can be seen

from the short period approximation given earlier,

A= Mo + 1 \j—LZHH C (236)

where (MM) in this expression is not made non-dimensional. From
this we see that increasing (MM), decreases the period of ‘the short
period mode as was also shown by the root locus plots in the previous
section.

We will consider now the two X-force derivat:,ives° These derive-
tives do not appear in either (SM) or (MM) and do not effect the
stabllity characteristics as much as those derivatives already dis-
cussed.

The change in the force in the X-direction with an increase in
angle of attack is normally negative, i.e. if the angle of attack is
incressed, a force is produced which tends to oppose the motion of the
aircraft. The contributions to this derivative are shown in Figure 28.
The tall contribution, as would be expected, is small, negative and
increases in proportion to the velocity. The rotor contribution is
positive and is given approximetely by \3 od {.w —%h o

A
Thus, an increase in angle of attack causes an increased inflow which
increases the thrust, producing a positive force in the X-direction.
The effect of the thrust increase becomes greater as the wing is

tilted forward. The various terms in the wing contribution are shown
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in the upper part of this Figure. We see that the biggest term

is that involving a change in the angle of attack, i.e. ( |~ %gf}\v),
rather than a change in the magnitude of the resultant velocity.

The fact that the wing 1s stalled decreases the value of this contri-
bution but the term involving the 1lift coefficient is larger at small
tilt angles, and the stalled wing has only a small effect on the con-
tribution. The sum of the various contributions is negative as in a
normal aircraft'and its magnitude increases as the tilt angle decreases.

The X-force change with velocity 1s also normally negsative since
a velocity increase will usually produce a force tending to oppose
the motion of the aircraft. The rotor contribution to the derivative
is always negative and approximately proportional to Cthw —aap)i .

E%?ii is always negative, i.e. an increase in the freestream ve-
locity produces a decrease in the inflow to the rotor. This causes

a decrease 1n the thrust and hence a force in the negative X-direction.
The effect of this thrust decrease increases as the tilt angle is de-
creased., This is shown in Figure 29.

The various terms 1n the wing contribution are also shown in this
Figure. Again the main effect is the change in angle of attack rather
than the change in the magnitude of the resultant velocity. The sharp
drop at about 70 degrees is due to wing stall. The sum of the wing
and rotor contributions has a dip at about 70 degrees since the nega-

tive rotor term is still small at this tilt angle.
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CONCLUSIONS

1. Values for the derivatives of the resultant velocity and
effective angle of attack with respect to forward veloclty and air-
craft angle of attack can be obtained from general charts without
extensive calculations.

2. Typical tilt wing VIQL has a short period mode whose period
becomes smaller as the tilt angle is decreased. The time to half
amplitude of this mode 1g approximately equal to & constant times
the pitching moment of inertia divided by the pitch damping. The
other mode 1s a long period oscillstion w‘hich becomes a pure con-
vergénce and a pure divergence when the wing stalls.

3. For una.g:celer‘a.ted level flight the wing stalls over part
of the transition. The amount of stall 1s decreased by acceleration
or climb and Iincreases by deceleration r.;r descent.

4. The aircraft very quickly becomes statically unstable when

the wing stalls.

RECOMMENDATTIONS FOR FURTHER STUDY

In order to galn a better understanding of VIOL dynamics, it is
necessary that more experimemtal work be done. Detailed analytical
analysis are not particularly useful if it cannot be determined
whether or not they accurately represent the physical situation. Two
types of experimental work are needed. First, it would be desirable
to have accurate measurements of the forces on the wing due to the

slipstream in order to determine what parameters of & rotor wing
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cambination effect the 11ft ommracteristics. Also, dynamic stability
information is needed to determine whether or not present theoretical
treatments give an accurate description of VIOL dynamic characteristics.
A theoretical treatment of the dynamics of a complete transition
with time-varying stability derivatives would also be valuable since
this type of analysis might differ considerably from the steady state

analysis if the acceleration 1s suffieiently high.
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APPENDICES

A. Inflow Ratio and Induced Velocity Derivatives

In this section we will give expressions for the derivatives of
;\ , the inflow ratio, and AJ” , the induced velocity, with respect
to A , AA)< , and (11- . These expressions are also plotted in
the form of charts in Figures 30 through 37.‘ The H-force coefficignt
derivatives which were derived earlier are plotted in Figure 38.

The inflow ratio in the slipstream is determined as follows:

7\s=/0\;</wn0(- N YVag
= N (\—-X))Ax /AJJ(\O( | A-1

Thus,

-— by oA 1\ M ‘
Ne= A = N+ () pan
= A-2
S No ; o
This expression is plotted in Figure 30.
The 7% derivatives were given in Reference 12, The expressions
for these derivatives will be summarized here and are plotted in

Figures 33-37.

Using equation (5) and noting that (See Figure 1),
2
Ve = N+ /&A;\D‘ Cae? A A-3

(where ‘Vﬂq here is the resultant velocity at the rotor plane and
not at the wing center of pressure), we easily obtain the following
expression for j>\

A\ DRaep coatn

A-k

2= Mx fun ok —
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Since this equation is of fourth degree in >\ it is desirable to
plot it in such a manner that >\ can be determined if M)‘ » X
and C‘r are known. Dividing the equation by >\°= — \IQVR

glves,

!

A= ,Gx_/amo(— \[3\3 A-5

4+ MR Coo2o

Wheres‘g >>/>\<> > Mx= Nx/)\o ¢ No=" CTA

This expression is plotted in Figure 37.

From the definition of ) we obtain,
— N 3\ — X A-6
Do R
¢ This i1s plotted in Figure 33.
Using the definition of >\ the following expressions can easily

be obtained for the >\ derivatives:

Y 2 = Yo L 534 Bx? conot ] At
Cx Ar (G2 + A )¥a

L - (5242 o) 4 By pnad e
Moot A (Sa4mA conde) 2+ N

M« pne (3F+ TR coodn 4 + Fix oA A9
iy (5P Fx? ) 33 4 N
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Using the charts for these derivatives the induced velocity

derivatives can easily be formed from the following expressions:

| o - ~ oX _
SE 5/\A>< = /Amo( au—x . A-10
— _ (2 A
ée.t%:mm[\ (P%CWX %)] A-11
O

These are plotted in Figures 31 and 32. The derivative C
T

differs from a>\ by only a constant and can thus be found

oGt

from the chart for ) (Figure 34).
Gr

B. Values of physical parameters for Vertol 76 (Full scale; model .
scale factor: 5.2)

N = »°
Qp = .572 ft.
X% = .075 ft.
)-a = 2.593 ft.
Zg = 1.17 £,
© = 0.3025 ft.
& -0.238 ft.
Ms = 1.08 slug
P = .00237h s—l‘-if%gg
LR - 702 ft/sec
Cw = L.75 ft.
Qv =5.73
G =0.218
Ss = 90k £t° (wing area in slipstream)
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2
= 24.3 ft° (wing ares outside slipstream)

= 9,88

= 4.29 x 10°
=1

= - 0.1

.

- 1.6 x 10

= 4,75 ft.

= 20 £t (area of horizontal tail)

- 20 £t° (fuselage equivalent flat plate area)

= 3160 1bs.

= 0.0087

= 12.5 ft.

= 5.4 ft.

= 3 ft. (tail chord)

= p°

= 1872 (average over all Lw values)

= 1885
= 1858
(main rotor) = 3.28

(tail rotor) = 2.0

mass of tall rotor blade = ,005 slug

(tail rotor) = 406 rad/sec

= 1.0 ft. (radius of tail rotor)

= .25 ft. (tail rotor chord)

mass main rotor blade = 0.455 slug
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Qi = 3.7 (tall 11ft curve slope)

QL Rr =5 (tail rotor blade lift curve slope)

C, Determination of Value for K from Experimental Data

A tilt-wing VITOL aircraft will not hover with the rotor exactly
vertical since the 1lift force on the wing due to the slipstream
produces a force acting in the negative X-direction. Thus for hover-
ing the wing must be tilted forward by an amount such that the com-
ponent of the wing 1ift in the X-direction. Since the wing 1ift is a
function of the arbitrary parameter K, K can be determined if it is
known at what wing tilt angle the full scale aircraft or a model of it
will hover.

When the aircraft is hovering, the wing drag is parallel to the

thrust and the 1lift 1s perpendicular to it. Thus wé have,

- \
T/;,mo(o= b crd /o +' D pn oo c-1
where 0= 90 — Lwo 1s the hovering rotor angle of
attack.

Expressing T, L, and D in terms of coefficients

PNTTRA (SR Cr un o=
= —;—PS VRa CLS Ced-Olo + %'OVR"S CDs/UJ\do

C\.s is given by,

CLS = CLso ( \“K)
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P

Substituting this into the above expression and solving for K we

obtain

o TR (@R} ‘
K== gz lan 55 Fher -Cos]
Tan (90- ‘59 C-k
Using values from appendix B and D gives,

K= 1- 357 Tn(Q0- 8y c-5

The model of the Vertol 76 tested at the Princeton University
O
Forward Flight Facllity was found to hover at §§5= i?'l or

5K0= 3° . Thus,
X

| — 3.57 (.053) = .84
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